

Evidence for an 4-Ene-3-oxosteroid-5 α -reductase and Δ^4 - Δ^5 -Ketosteroid Isomerase Activity in Extracts of *Streptomyces hydrogenans*

Werner Tinschert * and Lothar Träger

Zentrum der Biologischen Chemie der Universität Frankfurt/M., Abteilung für Biochemie der Hormone

(Z. Naturforsch. 32c, 949–953 [1977]; received July 14, 1977)

Testosterone, 5 α -Reductase, Ketosteroid Isomerase, *Streptomyces hydrogenans*

A homogenate of cells of *Streptomyces hydrogenans* which have been cultivated in the presence of estradiol-17 β , was separated by gel filtration on Sephadex G-200. In the presence of NADH, a few distinct fractions converted about 10% of [3 H]testosterone to 5 α -dihydrotestosterone (5 α -DHT), 5 α -androstane-dione, 4-androstenedione, and dehydroepiandrosterone (DHEA). The metabolites were separated after two consecutive runs on silica gel and propanediol-1,2-impregnated cellulose plates by thin layer chromatography. Identification was achieved by comparison with known steroid samples, specific staining procedures and by crystallization to constant specific radioactivity. The 5 α -reductase activity responsible for the formation of 5 α -DHT and 5 α -androstane-dione *in vitro* required NADH as co-substrate and could only be found after induction of the cells with estradiol-17 β *in vivo*. Within the same chromatographic fractions, a Δ^4 - Δ^5 -ketosteroid isomerase activity can be detected which catalyzes the reverse reaction from the 4-androstene testosterone to the 5-anthrostene DHEA *in vitro*.

Introduction

Cell-free homogenates of the actinomycete *Streptomyces hydrogenans* contain different steroid-metabolizing enzymes, *e.g.* 20 β -hydroxysteroid dehydrogenase (EC 1.1.1.53) and 17 β -hydroxysteroid dehydrogenase (17 β -HSD, EC 1.1.1.63)^{1,2}. The synthesis of both enzymes can be induced by certain steroids. In the case of 17 β -HSD the intracellular activity of the enzyme increases up to 10-fold in the presence of testosterone, 5 α -dihydrotestosterone (5 α -DHT), estradiol-17 β , or 17 α -methyltestosterone *in vivo*³. Thereby, 80% of testosterone is converted to androstenedione within 2 h². But small amounts of 5 α -androstanes can be detected as well. Therefore, further steroid-metabolizing enzymes must be active *in vivo*.

In order to investigate the biochemical properties of the enzymatic activities which are responsible for the formation of those minor testosterone metabolites, extracts of the microorganism were tested for 5 α -reductase activity *in vitro*.

Requests for reprints should be sent to Prof. Dr. L. Träger, Klinikum der J. W. Goethe-Universität Frankfurt/M., Theodor-Stern-Kai, D-6000 Frankfurt/M. 70.

* This work is part of the doctoral thesis of W. Tinschert, Frankfurt/M., 1977.

Materials and Methods

[7 - 3 H]Testosterone (25 Ci/mmol) was obtained from New England Nuclear Corp., Dreieichenhain, W.-Germany. Non-radioactive steroids, silica gel plates 60 F 254 (layer-thickness 250 μ m), cellulose plates without fluorescent indicator (layer-thickness 100 μ m), solvents and staining chemicals were obtained from E. Merck AG, Darmstadt. NAD⁺, NADH and NADPH were purchased from Boehringer, Mannheim.

Cultivation of the microorganism

Streptomyces hydrogenans (ATCC 19631) was cultivated as described previously¹. Cells were grown for 3 h in a culture medium supplemented with estradiol-17 β to an end-concentration of 0.09 mM, and then the culture was further incubated for 4 h at 30 °C. Cells were harvested by vacuum filtration and wet cell material was homogenized sonically using a Branson Sonifier S 75 at a current of 4.5 A (power setting of 8)⁴ in 10 mM Tris buffer, pH 7.4, for 90 sec⁵. Cytosol was obtained by centrifugation of the cell homogenate at 165 000 \times g for 3 h. Protein content was determined turbidimetrically after precipitation with trichloroacetic acid¹.

Gel filtration

The cytosolic fraction was applied to a column of Sephadex G-200 (82 \times 2.6 cm), previously equilibrated with 10 mM Tris buffer, pH 7.4, at 4 °C.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

Elution was carried out at a flow rate of 8 ml/h, with the same buffer at 4 °C. Optical density was continuously monitored at 254 nm.

Extraction of steroids

Eluates from Sephadex G-200 were tested for 17 β -HSD activity with [3 H]testosterone and NAD $^+$ as substrates. The reaction mixture (final volume of 3.5 ml) contained: 0.1 ml = 0.1 mCi of [7 3 H] testosterone (25 Ci/mmol, end. conc. 1.1 μ M) in benzene/ethanol (the organic solvent was removed under N₂ stream), 3 ml eluate in Tris buffer, pH 7.4, and 0.5 ml of 5 mM NAD $^+$ in the same buffer. The reaction mixture was incubated at 30 °C for 3 h. Metabolism of testosterone was determined after extraction of the radioactive testosterone metabolites and chromatography of the mixture by thin layer chromatography (TLC) on silica gel F 254 [solvent system chloroform – ethyl acetate – petroleum benzene (60–80 °C) (50:45:5, v/v/v)]. Rechromatography was performed on propanediol-1,2-imregnated cellulose plates [solvent system benzene – cyclohexane (50:50, v/v)]⁶.

5 α -Reductase activity was tested in the Sephadex eluates with [3 H]testosterone and NADH as substrates. The reaction mixture (final volume of 3.5 ml) contained: 0.1 ml = 0.1 mCi of [7 3 H] testosterone (25 Ci/mmol, end. conc. 1.1 μ M) in benzene/ethanol (evaporated to dryness under N₂), 3 ml of Sephadex-eluate in Tris buffer, pH 7.4, and 0.5 ml of 40 mM NADH in the same buffer. The reaction mixture was incubated at 30 °C for 3 h. 5 α -Reduction of testosterone was followed after extraction and chromatography of the steroid metabolites⁶. Final identification of the metabolites was achieved by three-fold recrystallization of the metabolites to a constant specific radioactivity².

Scintillation counting

After the two consecutive separations of the steroids by TLC, 0.5 cm wide bands of the chromatographic layers were scraped off. To 1/14 of the 7 cm long band (0.5 × 0.5 cm), 5 ml of toluene-based liquid scintillation cocktail was added. Counting was performed in a Packard Tri-Carb, model 3375. Counting efficiency: 40%, background: 16–20 cpm/0.5 × 0.5 cm TLC band.

Results

Identification of testosterone metabolites

After gel filtration of the cell homogenate on Sephadex G-200, high and low molecular weight components were separated from the fractions containing 17 β -HSD and 5 α -reductase activity (Fig. 1).

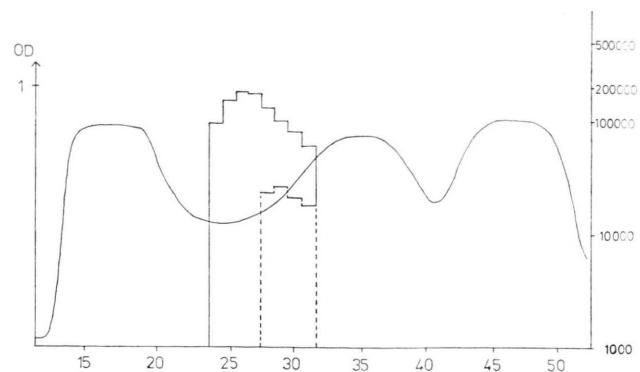


Fig. 1. Gel filtration of 50 ml cytosol (5.9 mg protein/ml) on Sephadex G-200 (82 × 2.6 cm) at 4 °C. Elution with Tris buffer, pH 7.4, flow rate 8 ml/h, fraction volume 8 ml. Optical density was monitored continuously at 254 nm. Relative activities of 17 β -HSD and 5 α -reductase were estimated as radioactivity of [3 H]androstenedione or [3 H]5 α -androstane-dione, respectively, formed by 3 ml of the eluted fractions in the presence of NAD $^+$ or NADH, respectively (see Methods). Abscissa: fraction No. Left ordinate: optical density at 254 nm. Right ordinate: radioactivity of the metabolites formed by each fraction, logarithmic plot of 1/14 cpm/fraction No. 24–31. — [3H]androstenedione (17 β -HSD); —— [3H]androstenedione (5 α -reductase)

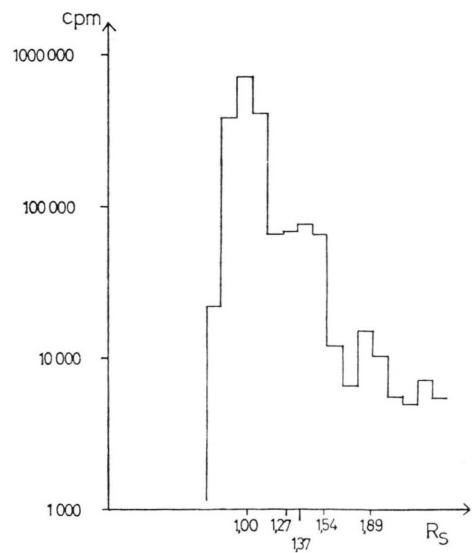


Fig. 2. Thin layer chromatography of radioactive metabolites of [3 H]testosterone after incubation with 3 ml Sephadex fraction No. 29 in the presence of 0.1 mCi [7 3 H]testosterone and NADH (end concentration 5.7 mM) at 30 °C for 3 h. After ether extraction the radioactive steroids were separated on silica gel F 254 plates [solvent system chloroform – ethyl acetate – petroleum benzene (60–80 °C) (50:45:5, v/v/v)]. Radioactivity was counted after elution of the different metabolites from the 0.5 cm wide layer bands. Abscissa: RS-values (S = testosterone; RS = testosterone 1; DHEA 1.27; 5 α -DHT 1.37; androstanedione 1.54; 5 α -androstanedione 1.89). Ordinate: log of total radioactivity cpm/0.25 cm².

Enzyme activities were localized by testing the ability of the column eluates to convert [^3H]testosterone into androstenedione, 5α -androstenedione, or 5α -dihydrotestosterone (5α -DHT), respectively, in the presence of the appropriate co-substrate *in vitro*. As can be seen in Fig. 1, 17β -HSD activity eluted before the 5α -reductase activity which can be found in fractions No. 28–31. A typical TLC of the radioactive metabolites of [^3H]testosterone is shown in Fig. 2.

For better separation of the testosterone metabolites, the area of the silica gel chromatogram at R_S 1.1–2.0 was scraped off, the radioactive material extracted, concentrated and rechromatographed on propanediol-1,2-impregnated cellulose plates (Fig. 3). Surprisingly, DHEA could be detected as an additional testosterone metabolite, which points to a Δ^4 - Δ^5 -ketosteroid isomerase (EC 5.3.3.1) active within Sephadex fractions No. 28–31.

Recrystallization to constant specific radioactivity

For final identification of the testosterone metabolites localized after two consecutive chromatographic separations and by specific staining reactions, the

Table I. Scheme of specific radioactivities of four different testosterone metabolites after three consecutive recrystallizations (R_S -values are given after TLC on propanediol-1,2-impregnated cellulose plates).

R_S	Metabolite	Specific radioactivity [cpm/mg]			
		Sample	1.	2.	3.
1.67	dehydroepiandrosterone	40 870	25 520	26 450	25 930
2.03	5α -dihydrotestosterone	15 600	8 290	8 130	8 370
3.66	4-androstenedione	93 480	64 540	65 460	65 000
4.22	5α -androstenedione	20 440	12 360	13 000	12 730

radioactive spots were eluted and supplemented with the pure non-radioactive steroid in question (Table I). The course of the specific radioactivities determined after each recrystallization proved that the assumptions for the identity of the four metabolites were correct.

In comparison to the total amount of testosterone (100%) at the start of the incubation, the following average amounts of metabolites were found after 3 h at 30 °C *in vitro*: 0.7% 5α -DHT, 1.3% 5α -androstenedione, 5.2% androstenedione, and 2.1% dehydroepiandrosterone (DHEA).

Cosubstrate requirement, induction and inhibition of the 5α -reductase activity

After replacement of NADH by the same amount of NADPH, no 5α -androstenedione or 5α -DHT could be detected. Therefore, NADPH could not replace NADH as a co-substrate for the bacterial 5α -reductase (EC 1.3.1.4). After addition of 5α -androstenedione to the incubation mixture (0.34 mM end. conc.) an average increase of 15% of the amount of [^3H]androstenedione formed from [^3H]testosterone had been found, in comparison to the level of [^3H]androstenedione formed in the absence of androstenedione. Simultaneously, no radioactive 5α -DHT or 5α -androstenedione could be traced. Therefore, 5α -androstenedione seems to inhibit 5α -reductase activity and to stimulate 17β -HSD *in vitro*. This result is opposite to the inhibitory action of 5α -androstenedione on 17β -HSD published previously³.

Considerable activities of 5α -reductase could only be found in the cytosolic fractions from those

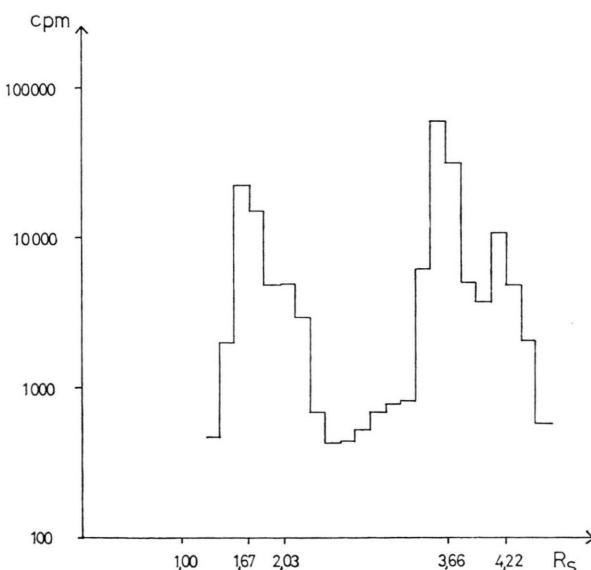


Fig. 3. Rechromatography of steroid metabolites on propanediol-1,2-impregnated cellulose plates in solvent system benzene–cyclohexane (50:50, v/v). After the preceding run on silica gel plates the area corresponding to R_S 1.1–2.0 was scraped off, eluted, the extract concentrated and reseparated on impregnated cellulose plates. Abscissa: R_S -values (S=testosterone; R_S testosterone 1; 5α -DHT 2.03; DHEA 1.67; androstenedione 3.66; 5α -androstenedione 4.22). Ordinate: log of total radioactivity cpm/0.25 cm².

cells which had been cultivated in the presence of estradiol-17 β . If the inducing steroid was omitted from the culture medium, only traces of testosterone were converted into 5α -androstane derivatives. So, estradiol-17 β stimulated enzyme synthesis of both 17 β -HSD as well as 5α -reductase in *Streptomyces hydrogenans*.

Both enzyme activities were strongly diminished in the cytosolic fractions *in vitro* when the cells were cultivated in the presence of 0.34 mM testosterone acetate + 0.09 mM estradiol-17 β . The mechanism of action of testosterone acetate as inhibitor of both enzyme syntheses is still unknown. 17 β -HSD is not inhibited by testosterone acetate *in vitro*³.

Discussion

By the systematic analysis of testosterone metabolites formed *in vitro*, the presence of a 5α -reductase activity could be shown in certain fractions of the cell homogenate from *Streptomyces hydrogenans*. Previous studies on the formation of 5α -pregnanes from pregnenolone *in vitro* came to the same conclusion⁷.

Considerable amounts of 5α -reductase activity can only be found *in vitro*, if the cells are cultivated in the presence of estradiol-17 β . Therefore, 5α -reductase is the third steroidmetabolizing enzyme of *Streptomyces hydrogenans*, the synthesis of which is induced by steroids *in vivo*. Whereas, 5α -reductase activity of *Mycobacterium smegmatis* cannot be induced by testosterone or 4-chloro-17 α -methyl-17 β -hydroxy-1,4-androstadien-3-one⁸.

Under the conditions employed, certain fractions of the cell cytosolic fraction convert 8% of testosterone into androstanedione plus DHEA, whereas 2% are identified as 5α -androstenedione plus 5α -DHT. *In vivo*, *Streptomyces hydrogenans* converts 80% of testosterone of the culture medium into androstanedione within 2 h². 5α -Reductase from *Streptomyces hydrogenans* accepts only NADH as H-donor and is not active in the presence of NADPH. NADH is also shown as co-substrate for 5α -reductase in *Nocardia restrictus*⁹. However, for the 5α -reductase activity of *Mycobacterium smegma-*

tis FAD seems to act as co-substrate¹⁰. In the case of 5α -reductase of *Nocardia corallina*, the essential H-donor is NADPH¹¹.

Opposite to our assumption, 17 β -HSD activity could not be inhibited after addition of 5α -androstenedione. Because this enzyme activity always contaminates the chromatographic fractions containing 5α -reductase and ketosteroid isomerase, we expected an increase of 5α -DHT resulting from the simultaneous inhibition of 17 β -HSD by 5α -androstenedione³. However, [³H]testosterone conversion to [³H]androstenedione is significantly stimulated in the presence of 5α -androstenedione. But we cannot exclude the possibility that perhaps there is a bacterial NADH-oxidase in the same cytosolic fractions which results in unusual reactions sequences¹².

Previous investigations have shown a considerable conversion of pregnenolone to progesterone by *Streptomyces hydrogenans* *in vitro*^{7, 13} which indicates a ketosteroid isomerase activity in the cell-free homogenate of this microorganism. Now, we are able to demonstrate a ketosteroid isomerase activity *in vitro* which accepts C₁₉-steroids as substrates. Under the conditions used, approximately 2% of [³H]testosterone are converted to DHEA. Because DHEA can only be formed after reduction at the C-3 of 5-androstene-3,17-dione, an additional 3 β -hydroxysteroid dehydrogenase must be present in the cytosolic fraction. Moreover, the production of DHEA confirms the reversibility of the 5-ene-4-ene-isomerization. The same conclusion was drawn by Lamontagne *et al.*¹⁴ who found a reformation of pregnenolone from progesterone by *Tetrahymena*. The formation of DHEA from androstanedione by adrenal microsomes was shown by Ward and Engel¹⁵. Whether *Streptomyces hydrogenans* contains different ketosteroid isomerases for C₂₁- and C₁₉-steroids has not yet been studied. In order to elucidate further enzymological data on 5α -reductase and ketosteroid isomerase, both enzymes need to be purified extensively.

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Grant No. Tr 31/10). We thank Mrs. I. Oldiges for drawing the pictures.

¹ A. Wacker, B. Bauer, and L. Träger, Hoppe-Seyler's Z. Physiol. Chem. **351**, 320 [1970].

² C. Markert, B. Betz, and L. Träger, Z. Naturforsch. **30 c**, 266 [1975].

³ C. Markert and L. Träger, Hoppe-Seyler's Z. Physiol. Chem. **356**, 1843 [1975].

⁴ J. Betz, H. Puchinger, and L. Träger, Hoppe-Seyler's Z. Physiol. Chem. **356**, 349 [1975].

⁵ J. Betz, B. Lotz, and L. Träger, Hoppe-Seyler's Z. Physiol. Chem. **357**, 777 [1976].

⁶ W. Tinschert and L. Träger, in preparation.

⁷ B. Kohler and L. Träger, Naturwissenschaften **62**, 299 [1975].

⁸ C. Hörhold, H. Groh, S. Dähnhardt, N. N. Lestrovaja, and K. Schubert, Z. Allg. Mikrobiol. **15**, 563 [1975].

⁹ T. Nambara, S. Ikegawa, and C. Takahishi, Chem. Pharm. Bull. **21**, 1938 [1975].

¹⁰ N. N. Lestrovaja, H. Groh, C. Hörhold, S. Dähnhardt, and K. Schubert, J. Steroid Biochem. **8**, 313 [1977].

¹¹ P. Germain, G. Lefebvre, B. Bena, and R. Gay, C. R. Seances Soc. Biol. **166**, 1123 [1972].

¹² P. Germain, G. Lefebvre, B. Bena, and R. Gay, C. R. Acad. Sc. **274** D, 600 [1972].

¹³ B. Palmowski and L. Träger, Hoppe-Seyler's Z. Physiol. Chem. **355**, 1070 [1974].

¹⁴ N. S. Lamontagne, A. R. Will, D. F. Johnson, and C. E. Holmlund, J. Steroid Biochem. **8**, 329 [1977].

¹⁵ M. G. Ward and L. L. Engel, J. Biol. Chem. **241**, 3147 [1966].